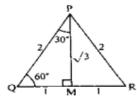
Trigonometry

Trigonometric Ratios. Trigonometric ratios are relationships between the sides of a right-angled triangle.

There are three primary trigonometric ratios: sine (\sin) , cosine (\cos) , and tangent (\tan) .

Expressions of the Six Trigonometric Ratios. For a right-angled triangle with angle θ :

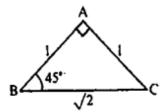
$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}, \quad \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}, \quad \tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$


The reciprocals of these ratios are: cosecant (csc), secant (sec), and cotangent (cot):

$$csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \cot \theta = \frac{1}{\tan \theta}$$

Special Angles. Common special angles include: 30°, 45°, and 60°.

300 and 600


Suppose ΔPQR is equilateral, with sides 2 units and that PM is the perpendicular bisector of QR

$$\sin 30^{0} = \frac{1}{2}$$
; $\cos 30^{0} = \frac{\sqrt{3}}{2}$; $\tan 30^{0} = \frac{1}{\sqrt{3}} or \frac{\sqrt{3}}{3}$
 $\sin 60^{0} = \frac{\sqrt{3}}{2}$; $\cos 60^{0} = \frac{1}{2}$; $\tan 60^{0} = \frac{\sqrt{3}}{1} = \sqrt{3}$

450

Consider a right-angled triangle which is isosceles and in which the equal sides are 1 unit in length. The equal angles will each be 45°

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2}; \cos 45^{\circ} = \frac{\sqrt{2}}{2}; \tan 45^{\circ} = \frac{1}{1} = 1$$

These results are summarised in the table below and should be memorised for future use.

Angle	sin	cos	tan
0.	0	1	0
30*	1/2	$\frac{\sqrt{3}}{2}$	1/3
45*	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60"	$\frac{\sqrt{3}}{2}$	1 2	√3
90*	1	0	00

Example 1

Show that $\cos^2 30^0 + \cos 60^0 \sin 30^0 = 1$

Solution

The left hand side is $cos^230^0 + cos 60^0 sin 30^0$

$$=\cos 30^{0} (\cos 30^{0}) + \cos 60^{0} \sin 30^{0}$$
$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} + \frac{1}{4}$$
$$= 1 \text{ as required}$$

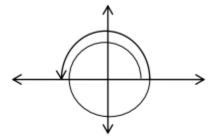
TYPES OF ANGLES

A CUTE: Between 0 and 90

OTBUSE: Greater than 90 but less than 180

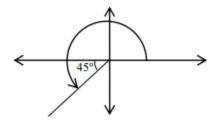
REFLEX: Greater than 180 but less than 360

Graphs of Trigonometric Functions. The graphs of $\sin \theta$ and $\cos \theta$ are periodic, oscillating between -1 and

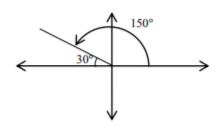

Complete the unanswered parts of the example below;

Example I

Write down the values of the following, leaving surds in your answers (the calculator should not be used).


- (a) cos 780°
- **(b)** sin 780°
- (c) tan 780°
- (d) sin 540°
- (e) cos 540°
- (f) cos 210°
- (g) sin 150°
- (h) sin(-270°)
- (i) sin 225°
- (j) sin 405°
- (k) tan(-60°)

 $\sin 540^{\circ}$


$$\sin 540^{\circ} = \sin 180^{\circ} = 0^{\circ}$$

 $\cos 540^{\circ} = \cos 180^{\circ} = 0^{\circ}$

sin 225°

$$\sin 225^\circ = -\sin 45^\circ = \frac{-1}{\sqrt{2}}$$

sin 150°

$$\sin 150 = +\sin 30 = \frac{1}{2}$$