Trigonometry

Trigonometric Ratios. Trigonometric ratios are relationships between the sides of a right-angled triangle. There are three primary trigonometric ratios: sine (\sin), cosine (cos), and tangent (tan).

Expressions of the Six Trigonometric Ratios. For a right-angled triangle with angle θ :

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}, \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}, \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

The reciprocals of these ratios are: cosecant (csc), secant (sec), and cotangent (\cot):

$$
\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta}
$$

Special Angles. Common special angles include: $30^{\circ}, 45^{\circ}$, and 60°.

30° and 60°

Suppose $\triangle P Q R$ is equilateral, with sides 2 units and that $P M$ is the perpendicular bisector of $Q R$

$\sin 30^{\circ}=\frac{1}{2} ; \quad \cos 30^{\circ}=\frac{\sqrt{3}}{2} ; \quad \tan 30^{\circ}=\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2} ; \cos 60^{\circ}=\frac{1}{2} ; \quad \tan 60^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3}$
45^{0}
Consider a right-angled triangle which is isosceles and in which the equal sides are 1 unit in length. The equal angles will each be 45°

$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2} ; \quad \cos 45^{\circ}=\frac{\sqrt{2}}{2} ; \tan 45^{\circ}=\frac{1}{1}=1$

These results are summarised in the table below and should be memorised for future use.

Angle	\sin	\cos	\tan
0^{*}	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{ } 3}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\sqrt{ } 3}{2}$	$\frac{1}{2}$	$\sqrt{ } 3$
90°	1	0	∞

Example 1

Show that $\cos ^{2} 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}=1$
Solution
The left hand side is $\cos ^{2} 30^{\circ}+\cos 60^{\circ} \sin 30^{\circ}$

$$
\begin{aligned}
& =\cos 30^{\circ}\left(\cos 30^{\circ}\right)+\cos 60^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}+\frac{1}{2} \times \frac{1}{2}=\frac{3}{4}+\frac{1}{4} \\
& =1 \text { as required }
\end{aligned}
$$

TYPES OF ANGLES

A CUTE: Between 0 and 90
OTBUSE: Greater than 90 but less than 180
REFLEX: Greater than 180 but less than 360
Graphs of Trigonometric Functions. The graphs of $\sin \theta$ and $\cos \theta$ are periodic, oscillating between -1 and Complete the un answered parts of the example below;

Example I

Write down the values of the following, leaving surds in your answers (the calculator should not be used).
(a) $\cos 780^{\circ}$
(b) $\sin 780^{\circ}$
(c) $\tan 780^{\circ}$
(d) $\sin 540^{\circ}$
(e) $\cos 540^{\circ}$
(f) $\cos 210^{\circ}$
(g) $\sin 150^{\circ}$
(h) $\sin \left(-270^{\circ}\right)$
(i) $\sin 225^{\circ}$
(j) $\sin 405^{\circ}$
(k) $\tan \left(-60^{\circ}\right)$

SOLUTION
$\sin 540^{\circ}$

$\sin 540^{\circ}=\sin 180^{\circ}=0^{\circ}$
$\cos 540^{\circ}=\cos 180^{\circ}=0^{\circ}$
$\sin 225^{\circ}$

$\sin 225^{\circ}=-\sin 45^{\circ}=\frac{-1}{\sqrt{2}}$
$\sin 150^{\circ}$

$\sin 150=+\sin 30=\frac{1}{2}$

