GREENHILL ACADEMY – SECONDARY

S.5 CHEMISTRY PRACTICAL TERM III HOLIDAY WORK 2023

Instructions:

Print all this work

Answer all the questions in the spaces provided

QUANTITATIVE ANALYSIS – DRY RUN

1. You are provided with the following:

FA1, which is approximately a 1.0 M sodium hydroxide solution.

FA2, which is a 0.1M hydrochloric acid

FA3, which is a 0.02 M hydrochloric acid

Q, which is an acidic solid

You are required to determine the percentage of the acid in ${\it Q}$

Procedure A

Pipette 25.0 or (20.0) cm^3 of **FA1** into a conical flask and titrate it with **FA2** using phenolphthalein indicator. Repeat the titration until you get consistent results. Record your results in **table A** below.

Results:

Volume of pipette used 20.0 cm³

TABLE A

Final burette reading(cm ³)		
Initial burette reading (cm ³)		
Volume of FA2 used (cm ³)		

Titer values used for calculation of the average volume of FA2

.....

Average volume of **FA2** used = 15.60 cm^3

Question

Calculate the molar concentration of sodium hydroxide in FA1

.....

Procedure B

Weigh accurately 1.5 g of Q and transfer it to a conical flask containing about 25 cm³ of

distilled water. Add 25 cm³ of FA1 and boil the mixture gently for about 15minutes (add more water during the boiling to maintain the volume nearly constant if necessary). Cool and transfer the mixture into a 250 cm³ volumetric flask. Dilute with distilled water to the mark. Label the solution **FA4**.

Pipette 25.0 or (20.0) cm³ of **FA4** into a conical flask and titrate with **FA3**, using phenolphthalein indicator. Repeat the titration until you obtain consistent results. Record your results in the table **B** Below

.....

Results

Volume of pipette used cm³ Table B

Final burette reading (cm ³)		
That burche reading (cm)		
I_{n} (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Initial burette reading (cm)		
e v v		
Volume of FA2 use (cm ²)		

Titre values used for calculation of the average volume of FA2

For inquiries call or whatsApp +256 700809214

Average volume of **FA2** used 13.30 cm^3

- a) Calculate:
- (i) The number of moles of excess sodium hydroxide that did not react with the acid in \mathbf{Q} .

(ii) The number of moles of sodium hydroxide that reacted with the acid in **Q**

b) Determine

(i) The mass of the acid in Q that reacted with sodium hydroxide (Relative molecular mass of the acid in Q is 126. 1 mole of the acid in q reacts with 2 moles of sodium hydroxide)

(ii) The percentage of the acid in Q

2. You are provided with the following:

BA1, which is potassium permanganate solution.

BA2, which contains 11.5g of $FeSO_4$. XH_2O in $500cm^3$ of solution

BA3, which is 2*M* sulphuric acid.

Solid **W** which is sodium oxalate $(Na_2C_2O_4)$.

You are required to determine the:

- (i) Concentration of potassium permanganate in **BA1** in $moldm^{-3}$.
- (ii) Value of X in $FeSO_4$. XH_2O

(Na = 23, C = 12, H = 1, Fe = 56, S = 32)

Theory.

Manganate(VII) ions react with Fe^{2+} and $C_2O_4^{2-}$ according to the equation below.

$$MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5Fe(aq) \rightarrow Mn^{2+}(aq) + 4H_{2}O(l) + 5Fe^{2+}(aq)$$

 $2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 8H_2O(l) + 10\ CO_2(g)$

Procedure I:

Weigh accurately 1.4g of W into a clean beaker. Add about $100cm^3$ of distilled water and shake well to dissolve. Transfer the solution into a $250cm^3$ volumetric flask and make up to the mark with distilled water. Label this solution **BA4**.

Pipette $20cm^3$ (or $25cm^3$) of **BA4** into a clean conical flask. Add equal volume of **BA3** to the solution in the conical flask. Heat the mixture to about $60^{\circ}C$ and immediately titrate the hot solution with **BA1** from the burette until

age

the end point is reached. Repeat the titration to obtain consistent results. Record your results in the table below:

Results:

Mass of beaker $+ W$		g
Mass of beaker	=	g
Mass of <i>W</i>	=	g
Volume of pipette us	sed:	25.0 cm ³

Table I

Final burette reading (cm^3)		
Initial burette reading (cm^3)		
Volume of <i>BA1</i> used (cm^3)		

Values used to calculate average volume of **BA1**

..... cm^{3} .

Average volume of *BA*1 used:*23.30*.....*cm*³.

Procedure II:

Pipette $20cm^3$ (or $25cm^3$) of **BA2** into a conical flask. Add equal volume of **BA3** to the solution in the conical flask. Titrate the mixture with **BA1** from the burette until the end point is reached. Repeat the titration to obtain consistent results. Record your results in the table below:

Table II

Final burette reading (cm^3)		
Initial burette reading (cm^3)		
Volume of BA1 used (cm^3)		

Values used to calculate average volume of **BA1**

..... cm^{3} .

	Ave	rage volume of <i>BA</i>1 used:
Que	stions	:
(a)	Calc	culate the concentration of
	(i)	sodium oxalate in BA4 in moles per litre.
	•••••	
	(ii)	potassium permanganate in BA1 in moles per litre.
	(iii)	$FeSO_4$, XH_2O in BA2 in moles per litre.
	(/	
•••••		
• • • • •	• • • • • • • • • •	
••••		
••••	• • • • • • • •	•••••••••••••••••••••••••••••••••••••••

Page 6

(b) Determine the value of *X* in *FeSO*₄. *XH*₂*O*.

INORGANIC QUALITATIVE ANALYSIS – DRY-RUN

 You are provided with substance Y, which contains two cations and two anions. You are required to identify the cations and the anions in Y. Carry out the following tests on Y and identify any gas (es) evolved.

TESTS	OBSERVATION	DEDUCTIONS
(a) Heat one spatula end-		
full of Y strongly in a		
dry test tube until there		
is no further change.		
(b)Put two spatula end-fuls		
of Y in a boiling tube		
add about 5 cm ³ of		
water and shake well.		
Filter and keep both the		
filtrate and the residue.		
Divide the filtrate into five portion		
(i) To the first part of the solution add sodium		•
hydroxide drop-wise until in excess.		
(ii) To the second part		
of solution add		
ammonia solution		
drop-wise until in		
excess.		

Page(

(iii) To the third part of	
the acidic solution	
add 2-3 drops of	
potassium	
thiocyanate.	
(iv) To the fourth part of	
the solution add 2-3	
drops of lead (II)	
nitrate	
(v) Carry out a test of	
your own to confirm	
the anion in the	
filtrate using the	
iiitn part.	
(c) Wash the residue with	
(c) wash the residue with	
water and dissolve it in	
dilute HCl (aq).until	
there's no further	
change.	
Divide the solution into	
three parts	
(i) To the first part of	
(1) To the mst part of	
the solution, add	
sodium hydroxide	
drop- wise until in	
excess.	
(ii) To the second part of	
the solution, add	
ammonia solution	
drop- wise until in	
excess.	
(iii) Use the third portion	
add 2-3 potassium	
iodide solution	

 $P_{age}9$

Cations in **Y**: Co^{2+} , Cu^{2+} The anions in **Y**: $Cl^{-}and CO_{3}^{2-}$

You are provided with substance T, which contains two cations and two 2. anions.

You are required to carry out the tests in Table 3 and identify the cations and the anions in **T**. Identify any gas(es) evolved. Record your observations and deductions in the table.

Table 3

(32 marks)

TESTS	OBSERVATIONS	DEDUCTIONS
 (a) Heat a spatula end-ful of T strongly in a dry test tube. 		
	at de la company	are entry, 1
		and the state
	And the second sec	
		and the second secon
		and the second second
 (b) To two spatula end-fuls of T in a boiling tube, add dilute nitric acid drop-wise until there is no further change. To the resultant solution, add dilute sodium hydroxide drop-wise until in excess. Shake and filter. Keep both the filtrate and residue. 		
(c) To the filtrate, add dilute nitric acid a little at a time until the solution is just acidic. Divide the acidified filtrate into four parts.		

Page **L**

(i) To the first part of the acidified filtrate, add 2 cm³ of ethanol followed by 2-3 drops of concentrated sulphuric acid and warm the mixture. (ii) To the second part of the acidified filtrate, add dilute sodium hydroxide solution drop-wise until in excess. (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T.	
2 cm³ of ethanol followed by 2-3 drops of concentrated sulphuric acid and warm the mixture. (ii) To the second part of the acidified filtrate, add dilute sodium hydroxide solution drop-wise until in excess. (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T.	
by 2-3 drops of concentrated sulphuric acid and warm the mixture. (ii) To the second part of the acidified filtrate, add dilute sodium hydroxide solution drop-wise until in excess. (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T.	
concentrated sulphuric acid and warm the mixture. (ii) To the second part of the acidified filtrate, add dilute sodium hydroxide solution drop-wise until in excess. (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T.	
(ii) To the second part of the acidified filtrate, add dilute sodium hydroxide solution drop-wise until in excess. (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T.	
(ii) To the second part of the acidified filtrate, add dilute sodium hydroxide solution drop-wise until in excess.	
 (ii) To the third part of the acidified filtrate, add dilute sodium hydroxide solution drop-wise until in excess. (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T. 	
dilute sodium hydroxide solution drop-wise until in excess. (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T.	
(iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T .	
(iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T.	
 (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T. 	
 (iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T. 	
(iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T .	
drop-wise until in excess. (iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T .	
(iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T .	
(iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T .	
(iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T .	
(iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in T.	
carry out a test of your own choice to confirm one of the cations in T .	-
own choice to confirm one of the cations in T.	
one of the cations in T.	
 Idd sources and sources will be conversed (1997) (1) 	
a first and the second the second first for the second second second second second second second second second	
(d) Dissolve the residue	
from (b) in dilute	
hydrochloric acid and divide the resultant	
solution into four parts.	

For inquiries call or whatsApp +256 700809214

 $_{Page}$ 11

	OBSERVATIONS	DEDUCTIONS
(i) To the first part of the resultant solution, add dilute sodium hydroxide solution drop-wise until in excess.	in the second of	nor With other (1997) South of the State South of the State
(ii) To the second part of the resultant solution, add dilute ammonia solution drop-wise until in excess.	odi te, m obi krav de filmo	thing works a light and a light of a light a light of a light a light of a light weared
 (iii) To the third part of the resultant solution, add 2-3 drops of potassium iodide solution. 	Silt la ra bla ra bla ra no talec or	e tradi ada oʻl (fil) ratač oʻship ab nin engi enemb
(iv) Use the fourth part of the solution to carry out a test of your own choice so as to confirm the second cation in T.	To been of other tuoy h president 1	The second secon

- (e) (i) The cations in T areand.....
 - (ii) The anions in **T** are.....and

 Zn^{2+} and Cu^{2+}

 \sim

Page **L**

CH_3COO^- and CO_3^{2-}

For inquiries call or whatsApp +256 700809214

ORGANIC QUALITATIVE ANALYSIS- DRY-RUN

1. You are provided with substance **E**, which is organic. Carry out the following tests to identify the nature of **E**. record your observations and deductions in the table below:

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn a small amount of E		
on a spatula end or on a		
crucible lid.		
(b) To 1cm^3 of E add 2 cm^3 of		
water, shake allow to stand,		
and then test with litmus		
paper.		
(c) To 1cm^3 of E add half		
spatula of sodium		
carbonate.		
(d) To 1cm ³ of E and 1cm ³ of		
concentrated sulphuric acid		
and warm gently		
(e) To about 2 cm ³ ammoniacal		
silver nitrate solution add a		
few drops of E and warm		
gently.		

Comment on the nature of **E**: is **methanoic acid.**

2. You are provided with substance A, which is organic. Carry out the following tests to identify the nature of A. record your observations and deductions in the table below:

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn a small amount of A		
on a spatula end or on a		
crucible lid.		
(b) To 1cm^3 of A add 2 cm^3 of		
water, shake allow to stand,		
and then test with litmus		
solution.		
(c) To 1cm ³ of A add 3cm ³		
of sodium carbonate		
solution and		
Warm		
(d) To 3cm ³ of Brady's		
reagent add 2 drops of A.		
(e) To 2cm^3 of A add 2-3		
drops of potassium		
dichromate (VII) solution		
and heat gently.		
Divide the solution into 2 parts.		

(f) To the first part add 3-4	
drops of Brady's Reagent.	
(g) To the second part add	
potassium manganate	
(VII) solution. Heat	
gently, shake	
and leave to stand.	
(h) To 4cm ³ of A add 3cm ³ of	
Iodine solution followed	
by drop wise addition of	
dilute sodium hydroxide	
solution	
until the brown colour just disappears warm gently and cool in ice-water bath.	

State the Identity of A: A is **ethanol**

3. You are provided with substance D, which is organic. Carry out the following tests to identify the nature of D. record your observations and deductions in the table below:

TESTS	OBSERVATIONS	DEDUCTIONS
(a) To 2 cm^3 of water and 1 cm^3		
of D, Shake and allow to stand		

(b) To 1cm ³ of compound D add		
2-3 drops of potassium		
dichromate		
solution.		
(i) To about 0.5cm^3 of the		
compound D, add 2-3		
drops of 2, 4-		
dinitrophenyl hydrazine solution.		
(ii) Dissolve 4 drops of	•	
compound D in about 1cm ³		
of methanol followed by		
1cm ³ of dilute sodium		
hydroxide solution, followed		
by iodine solution until in the		
iodine colour persists. Then		
warm and		
allow to stand		

Comment on the nature of compound D

The compound is an **aromatic carbonyl compound** with the structure C_6H_5

СН

For inquiries call or whatsApp +256 700809214

4. You are provided with substance G, which is organic. Carry out the following tests to identify the nature of A. record your observations and deductions in the table below

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn a small amount of G		
on a spatula end		
(b) To 1cm ³ of compound G add		
2cm ³ of water and shake.		
Test the solution with litmus		
paper.		
(c) Shake 2-3 drops of G with		
1 cm ³ of dilute Hydrochloric		
acid.		
(d) To 1 cm ³ of , drop wise add a		
few drops of bromine water		
(e) To 2cm ³ of dilute		
hydrochloric acid add a few		
drops of G. cool the test tube		
in ice-water bath and add		
1 cm ³ of sodium nitrite		
solution. Then add 1-2cm ³ of		
naphthalene 2-1 solution in		
sodium hydroxide solution.		
Functional group in G is: Amino gro	un (-NH2 Gist A nrims	ary aromatic amine

Functional group in G is: **Amino group (-NH2** G is: A primary aromatic amine