GREENHILL ACADEMY -SECONDARY

S. 5 CHEMISTRY PRACTICAL TERM III HOLIDAY WORK 2023

Instructions:

Print all this work

Answer all the questions in the spaces provided

QUANTITATIVE ANALYSIS -DRY RUN

1. You are provided with the following:

FA1, which is approximately a 1.0 M sodium hydroxide solution.
FA2, which is a $0.1 \mathbf{M}$ hydrochloric acid
FA3, which is a 0.02 M hydrochloric acid
Q, which is an acidic solid
You are required to determine the percentage of the acid in \boldsymbol{Q}

Procedure A

Pipette 25.0 or (20.0) cm^{3} of FA1 into a conical flask and titrate it with FA2 using phenolphthalein indicator. Repeat the titration until you get consistent results. Record your results in table \mathbf{A} below.

Results:

Volume of pipette used $\underline{\mathbf{2 0 . 0}} \mathrm{cm}^{3}$
TABLE A

Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of FA2 used $\left(\mathrm{cm}^{3}\right)$			

Titer values used for calculation of the average volume of FA2

Average volume of FA2 used $=\mathbf{1 5 . 6 0} \mathrm{cm}^{3}$

Question

Calculate the molar concentration of sodium hydroxide in FA1
\qquad
\qquad
\qquad

Procedure B

Weigh accurately 1.5 g of Q and transfer it to a conical flask containing about $25 \mathrm{~cm}^{3}$ of
distilled water. Add $25 \mathrm{~cm}^{3}$ of FA1 and boil the mixture gently for about 15 minutes (add more water during the boiling to maintain the volume nearly constant if necessary). Cool and transfer the mixture into a $250 \mathrm{~cm}^{3}$ volumetric flask. Dilute with distilled water to the mark. Label the solution FA4.

Pipette 25.0 or (20.0) cm^{3} of FA4 into a conical flask and titrate with FA3, using phenolphthalein indicator. Repeat the titration until you obtain consistent results. Record your results in the table B Below

Results

Volume of pipette used cm^{3}

Table B

Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of FA2 use $\left(\mathrm{cm}^{3}\right)$			

Titre values used for calculation of the average volume of FA2

Average volume of FA2 used $\quad 13.30 \mathrm{~cm}^{3}$

a) Calculate:
(i) The number of moles of excess sodium hydroxide that did not react with the acid in \mathbf{Q}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The number of moles of sodium hydroxide that reacted with the acid in \mathbf{Q}
\qquad
\qquad
\qquad
\qquad
\qquad

b) Determine

(i) The mass of the acid in Q that reacted with sodium hydroxide (Relative molecular mass of the acid in Q is 126.1 mole of the acid in q reacts with 2 moles of sodium hydroxide)
\qquad
\qquad
\qquad
\qquad
(ii) The percentage of the acid in Q
2. You are provided with the following:
$\boldsymbol{B} \boldsymbol{A 1}$, which is potassium permanganate solution.
$\boldsymbol{B A 2}$, which contains 11.5 g of $\mathrm{FeSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$ in $500 \mathrm{~cm}^{3}$ of solution
$\boldsymbol{B A 3}$, which is $2 M$ sulphuric acid.
Solid \boldsymbol{W} which is sodium oxalate $\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$.

You are required to determine the:
(i) Concentration of potassium permanganate in $\boldsymbol{B} \boldsymbol{A 1}$ in moldm ${ }^{-3}$.
(ii) Value of \boldsymbol{X} in $\mathrm{FeSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$

$$
(N a=23, C=12, H=1, F e=56, S=32)
$$

Theory.

Manganate(VII) ions react with Fe^{2+} and $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ according to the equation below.

$$
\begin{gathered}
\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{Fe}(a q) \rightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)+5 \mathrm{Fe}^{2+}(a q) \\
2 \mathrm{MnO}_{4}^{-}(a q)+16 \mathrm{H}^{+}(a q)+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q) \rightarrow 2 \mathrm{Mn}^{2+}(a q)+8 \mathrm{H}_{2} \mathrm{O}(l)+10 \mathrm{CO}_{2}(g)
\end{gathered}
$$

Procedure I:

Weigh accurately 1.4 g of \boldsymbol{W} into a clean beaker. Add about $100 \mathrm{~cm}^{3}$ of distilled water and shake well to dissolve. Transfer the solution into a $250 \mathrm{~cm}^{3}$ volumetric flask and make up to the mark with distilled water. Label this solution BA4.

Pipette $20 \mathrm{~cm}^{3}$ (or $25 \mathrm{~cm}^{3}$) of $\boldsymbol{B} \boldsymbol{A} \mathbf{4}$ into a clean conical flask. Add equal volume of $\boldsymbol{B A} \mathbf{3}$ to the solution in the conical flask. Heat the mixture to about $60^{\circ} \mathrm{C}$ and immediately titrate the hot solution with $\boldsymbol{B A} \boldsymbol{1}$ from the burette until
the end point is reached. Repeat the titration to obtain consistent results. Record your results in the table below:

Results:

Volume of pipette used:25.0...................... cm^{3}

Table I

Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of BA1 used $\left(\mathrm{cm}^{3}\right)$			

Values used to calculate average volume of $\boldsymbol{B A 1}$ cm^{3}.

Average volume of $\boldsymbol{B A 1}$ used:
23.30 cm^{3}.

Procedure II:

Pipette $20 \mathrm{~cm}^{3}$ (or $25 \mathrm{~cm}^{3}$) of $\boldsymbol{B} \boldsymbol{A} \mathbf{2}$ into a conical flask. Add equal volume of $\boldsymbol{B A} \mathbf{3}$ to the solution in the conical flask. Titrate the mixture with $\boldsymbol{B A} \boldsymbol{1}$ from the burette until the end point is reached. Repeat the titration to obtain consistent results. Record your results in the table below:
Volume of pipette used: cm^{3}

Table II

Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of $\boldsymbol{B A 1}$ used $\left(\mathrm{cm}^{3}\right)$			

Values used to calculate average volume of $\boldsymbol{B A} \boldsymbol{A}$

$$
\mathrm{cm}^{3}
$$

Average volume of $\boldsymbol{B A} \mathbf{1}$ used: 23.00
cm^{3}.
Questions:
(a) Calculate the concentration of
(i) sodium oxalate in $\boldsymbol{B A 4}$ in moles per litre.
(ii) potassium permanganate in $\boldsymbol{B} \boldsymbol{A 1}$ in moles per litre.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) $\mathrm{FeSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$ in $\boldsymbol{B} \boldsymbol{A} \mathbf{2}$ in moles per litre.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Determine the value of \boldsymbol{X} in $\mathrm{FeSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$.

INORGANIC QUALITATIVE ANALYSIS -DRY-RUN

1. You are provided with substance \mathbf{Y}, which contains two cations and two anions.

You are required to identify the cations and the anions in \mathbf{Y}. Carry out the following tests on \mathbf{Y} and identify any gas (es) evolved.

TESTS	OBSERVATION	DEDUCTIONS
(a) Heat one spatula endfull of \mathbf{Y} strongly in a dry test tube until there is no further change.		
(b) Put two spatula end-fuls of \mathbf{Y} in a boiling tube add about $5 \mathrm{~cm}^{3}$ of water and shake well. Filter and keep both the filtrate and the residue. Divide the filtrate into five portion		
(i) To the first part of the solution add sodium hydroxide drop-wise until in excess.		
(ii) To the second part of solution add ammonia solution drop-wise until in excess.		

Cations in $\mathbf{Y}: \mathrm{Co}^{2+}, \mathrm{Cu}^{2+}$ The anions in $\mathbf{Y}: \mathrm{Cl}^{-}$and CO_{3}^{2-}
2. You are provided with substance T, which contains two cations and two anions.
You are required to carry out the tests in Table 3 and identify the cations and the anions in T. Identify any gas(es) evolved.
Record your observations and deductions in the table.
Table 3
(32 marks)

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Heat a spatula end-ful of T strongly in a dry test tube.		
(b) To two spatula end-fuls of T in a boiling tube, add dilute nitric acid drop-wise until there is no further change. To the resultant solution, add dilute sodium hydroxide drop-wise until in excess. Shake and filter. Keep both the filtrate and residue.		
(c) To the filtrate, add dilute		
nitric acid a little at a		
time until the solution is		
just acidic. Divide the		
acidified filtrate into		
four parts.		

TESTS

TESTS	OBSERVATIONS	DEDUCTIONS
(i) To the first part of the acidified filtrate, add $2 \mathrm{~cm}^{3}$ of ethanol followed by 2-3 drops of concentrated sulphuric acid and warm the mixture.	OBSERVATIONS	
(ii) To the second part of the acidified filtrate, add dilute sodium hydroxide solution drop-wise until in excess.		
(iii) To the third part of the acidified filtrate, add dilute ammonia solution drop-wise until in excess.		
(iv) Use the fourth part of the acidified filtrate to carry out a test of your own choice to confirm one of the cations in \mathbf{T}.		
(d) Dissolve the residue from (b) in dilute hydrochloric acid and divide the resultant solution into four parts.		

TESTS	OBSERVATIONS	DEDUCTIONS
(i)To the first part of the resultant solution, add dilute sodium hydroxide solution drop-wise until in excess.		
(ii)To the second part of the resultant solution, add dilute ammonia solution drop-wise until in excess.		
(iii)To the third part of the resultant solution, add 2-3 drops of potassium iodide solution.		

(e) (i) The cations in T areand.
(ii) The anions in \mathbf{T} are. and
\qquad
\qquad
\qquad

ORGANIC QUALITATIVE ANALYSIS- DRY-RUN

1. You are provided with substance \mathbf{E}, which is organic. Carry out the following tests to identify the nature of \mathbf{E}. record your observations and deductions in the table below:

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn a small amount of \mathbf{E} on a spatula end or on a crucible lid.		
(b) To $1 \mathrm{~cm}^{3}$ of \mathbf{E} add $2 \mathrm{~cm}^{3}$ of water, shake allow to stand, and then test with litmus paper.		
(c) To $1 \mathrm{~cm}^{3}$ of \mathbf{E} add half spatula of sodium carbonate.		
(d) To $1 \mathrm{~cm}^{3}$ of E and $1 \mathrm{~cm}^{3}$ of concentrated sulphuric acid and warm gently		
(e) To about $2 \mathrm{~cm}^{3}$ ammoniacal silver nitrate solution add a few drops of E and warm gently.		

Comment on the nature of \mathbf{E} : is methanoic acid.
2. You are provided with substance A, which is organic. Carry out the following tests to identify the nature of A. record your observations and deductions in the table below:

TESTS	OBSERVATIONS	DEDUCTIONS
(a) Burn a small amount of \mathbf{A} on a spatula end or on a crucible lid.		
(b) $\mathrm{To}_{1} 1 \mathrm{~cm}^{3}$ of \mathbf{A} add 2 cm^{3} of water, shake allow to stand, and then test with litmus solution.		
(c) To $1 \mathrm{~cm}^{3}$ of \mathbf{A} add $3 \mathrm{~cm}^{3}$ of sodium carbonate solution and Warm		
(d) To $3 \mathrm{~cm}^{3}$ of Brady's reagent add 2 drops of \mathbf{A}.		
(e) To $2 \mathrm{~cm}^{3}$ of \mathbf{A} add 2-3 drops of potassium dichromate (VII) solution and heat gently. Divide the solution into 2 parts.		

f) To the first part add 3-4 drops of Brady's Reagent.		
(g) To the second part add		
potassium manganate		
(VII) solution. Heat		
gently, shake		
and leave to stand.		

State the Identity of A: A is ethanol
3. You are provided with substance D , which is organic. Carry out the following tests to identify the nature of D. record your observations and deductions in the table below:

TESTS	OBSERVATIONS	DEDUCTIONS
(a) To $2 \mathrm{~cm}^{3}$ of water and $1 \mathrm{~cm}^{3}$ of D, Shake and allow to stand		

(b) To $1 \mathrm{~cm}^{3}$ of compound D add 2-3 drops of potassium dichromate solution.		
(ii) Dissolve 4 drops of compound D in about $1 \mathrm{~cm}^{3}$ of methanol followed by $1 \mathrm{~cm}^{3}$ of dilute sodium hydroxide solution, followed by iodine solution until in the iodine colour persists. Then warm and allow to stand		

Comment on the nature of compound D
The compound is an aromatic carbonyl compound with the structure

4. You are provided with substance G, which is organic. Carry out the following tests to identify the nature of A. record your observations and deductions in the table below

