GREENHILL ACADEMY-SECONDARY.

TERM 3 HOLIDAY WORK

S.5 PHYSICS 2 (P510/2)

Answer all questions.

Assume where necessary the following constants;

\checkmark	Acceleration due to grav	vity, g	=	9.81ms ⁻²
\checkmark	Electron charge, e		=	1.6x10 ⁻¹⁹ C
\checkmark	Electron mass		=	9.11x10 ⁻³¹ kg
\checkmark	Speed of light in a vacuum, c		=	3.0x10 ⁸ ms ⁻¹
\checkmark	\sim Permittivity of free space ε_o		=	8.85 x 10 ⁻¹² Fm ⁻¹
✓	The constant	$\frac{1}{4\pi\varepsilon_0}$	=	9.0 x 10 ⁹ F ⁻¹ m

DIRECT CURRENT (20 marks)

- 1. A battery of e.m.f 12v and internal resistance 2 Ω is connected to a wire of resistance 10 Ω
 - (i) calculate the p.d across the wire (3 marks)
 - (ii) what will be the p.d across the wire when a 15 Ω resistor is connected in parallel with it? (4 marks)
- 2. Explain how a moving coil galvanometer which has resistance of 25Ω and full scale deflection of 4.0mA can be converted to an ammeter reading a maximum of 1A.

(3 marks)

3. In the circuit below V is a voltmeter of resistance 600 Ω

- (i) find the reading of the voltmeter
- (ii) calculate the power dissipated in the 40Ω resistor

(3 marks) (2 marks)

A battery of e.m.f 90V and negligible internal resistance is connected in series with a 600Ω and a 400Ω resistor. A voltmeter connected across the 600Ω resistor reads 45V. Determine the resistance of the voltmeter. (5marks)

CAPACITORS (15 marks)

- 5. A voltage of 100v is applied across the plates of a parallel plates capacitor whose plates are of dimensions 15 cm by 12 cm separated by an insulator of thickness 8mm and relative permittivity 2.3.
 - (i) Determine the capacitance of the capacitor. (3 marks)
 - (ii) Calculate the charge stored by the capacitor (3 marks)
- 6. Two identical parallel plates capacitors of capacitance C are connected in series across a source of p.d V. A dielectric of relative permittivity, ε_r is inserted in one of the capacitors;
 - (i) Determine the effective capacitance of the capacitors. (3 marks)
 - Determine the energy stored in the network before and after the dielectric is inserted. Hence Show that the energy stored increases by a factor of

(6 marks)

$$\frac{2\varepsilon_r}{(1+\varepsilon_r)}$$

ELECTROSTATICS (15 marks)

7. The figure below shows two identical metal balls P and Q of mass m, arranged in air with P fixed on an insulating stand and Q suspended by a silk thread from a height h, above P.

When the balls are given identical charge q they repel. In equilibrium, the balls are at a distance x apart as shown in the diagram above.

- (i) Show that the charge q = $\sqrt{\frac{4\pi\epsilon_o \text{ mgx}^3}{h}}$ (4 marks)
- (ii) Sketch the electric field patter between the charges P and Q (2 marks)

8. Charges of -3μ C, $+4\mu$ C and $+3\mu$ C are placed at the corners P, Q and R of a rectangle PQRS in which PQ = 3 cm and QR = 4 cm as shown in the figure below

- (i) If the charges are in vacuum, calculate the electric intensity at S. (7 marks)
- (ii) Sketch the electric field pattern for the above charge distribution. (2 marks)

END