GREENHILL ACADEMY-SECONDARY.

TERM 3 HOLIDAY WORK

S. 5 PHYSICS 2 (P510/2)

Answer all questions.

Assume where necessary the following constants;

\checkmark Acceleration due to gravity, g
\checkmark Electron charge, e
\checkmark Electron mass
\checkmark Speed of light in a vacuum, c
\checkmark Permittivity of free space ε_{0}
\checkmark The constant $\frac{1}{4 \pi \varepsilon_{0}}$
$=9.81 \mathrm{~ms}^{-2}$
$=1.6 \times 10^{-19} \mathrm{C}$
$=9.11 \times 10^{-31} \mathrm{~kg}$
$=3.0 \times 10^{8} \mathrm{~ms}^{-1}$
$=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
$=9.0 \times 10^{9} \mathrm{~F}^{-1} \mathrm{~m}$

DIRECT CURRENT (20 marks)

1. A battery of e.m.f 12 v and internal resistance 2Ω is connected to a wire of resistance 10Ω
(i) calculate the p.d across the wire
(ii) what will be the p.d across the wire when a 15Ω resistor is connected in parallel with it?
2. Explain how a moving coil galvanometer which has resistance of 25Ω and full scale deflection of 4.0 mA can be converted to an ammeter reading a maximum of 1 A .
3. In the circuit below V is a voltmeter of resistance 600Ω

(i) find the reading of the voltmeter
(3 marks)
(ii) calculate the power dissipated in the 40Ω resistor
4. A battery of e.m.f 90 V and negligible internal resistance is connected in series with a 600Ω and a 400Ω resistor. A voltmeter connected across the 600Ω resistor reads 45 V . Determine the resistance of the voltmeter.

CAPACITORS (15 marks)

5. A voltage of 100 v is applied across the plates of a parallel plates capacitor whose plates are of dimensions 15 cm by 12 cm separated by an insulator of thickness 8 mm and relative permittivity 2.3.
(i) Determine the capacitance of the capacitor.
(3 marks)
(ii) Calculate the charge stored by the capacitor
(3 marks)
6. Two identical parallel plates capacitors of capacitance C are connected in series across a source of p.d V . A dielectric of relative permittivity, ε_{r} is inserted in one of the capacitors;
(i) Determine the effective capacitance of the capacitors.
(ii) Determine the energy stored in the network before and after the dielectric is inserted. Hence Show that the energy stored increases by a factor of

$$
\begin{equation*}
\frac{2 \varepsilon_{r}}{\left(1+\varepsilon_{r}\right)} \tag{6marks}
\end{equation*}
$$

ELECTROSTATICS (15 marks)

7. The figure below shows two identical metal balls P and Q of mass m, arranged in air with P fixed on an insulating stand and Q suspended by a silk thread from a height h, above P.

When the balls are given identical charge q they repel. In equilibrium, the balls are at a distancex apart as shown in the diagram above.
(i) Show that the charge $\mathrm{q}=\sqrt{\frac{4 \pi \varepsilon_{o}}{\mathrm{mgx}} \frac{\mathrm{m}}{\mathrm{h}}}$
(ii) Sketch the electric field patter between the charges P and Q
8. Charges of $-3 \mu C,+4 \mu C$ and $+3 \mu C$ are placed at the corners P, Q and R of a rectangle $P Q R S$ in which $P Q=3 \mathrm{~cm}$ and $Q R=4 \mathrm{~cm}$ as shown in the figure below

(i) If the charges are in vacuum, calculate the electric intensity at S . (7 marks)
(ii) Sketch the electric field pattern for the above charge distribution. (2 marks)

END

